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A qualitative analysis is performed for a dynamical system simulating the plane-parallel motion of a 

body through a medium in jet or separated flow, such that all the interactions of the medium with the 

body are concentrated on a part of the body having the form of a flat plate [l, 21. The interaction force 

is directed along a normal to the plate, and the point of application of this force depends only on the 

angle of attack. The propulsive force acts along the central perpendicular to the plate and ensures that 

the value of the velocity of the centre of the plate remains constant throughout the motion. Moreover, a 

damping moment linear in the angular velocity is imposed on the body, and a classification of the phase 

patterns of the system is obtained depending on the coefficient of that moment. A mechanical and 

topological analogy with an anchored pendulum in a flowing medium is pointed out [3,4]. 

THE WELLKNOWN Kirchhoff problem, and also the effects discussed in [5], do not exhaust all 
possibilities for the motion of a body in a medium when the translational motion of the former 
is coupled to its rotation. In this paper, we highlight the problem of the motion of a body under 
the condition that the line of action of the force applied to the body does not change its 
orientation with respect to the body, but can only be displaced parallel to it depending on the 
angle of attack. Similar conditions occur for motions with large angles of attack in media with 
jet [l, 21 or separated [6] flow. 

1. STATEMENT OF THE PROBLEM 

We will consider a model for the problem of the plane-parallel motion of a rigid body 
through a resisting medium. It is assumed that the medium does not act on the entire surface of 
the body, but only on the part that has the shape of a flat plate. Here the interaction of the body 
with the medium occurs under conditions of jet or separated flow. The latter conditions are 
satisfied, for example, by bodies of cylindrical shape entering water, by a parachute moving 
through the air, etc. 

The force S of the interaction of the body with the medium is directed along the normal to 
the flat plate AB (Fig. 1). The point of application N of this force is determined solely by the 
angle of attack a, which is measured anticlockwise from the velocity vector 2) at the centre of 
the plate D to the normal at this point (the line CD) (so that DN = y(a)). We take the value of 
the resistance force in the form S = s(a)u*, where u is the absolute value of the velocity of the 
centre of the plate. 
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We will take the mass distribution to be such that the centre of mass C of the body is situated 
at the central perpendicular CD to the plate. 

We assume that an additional propulsive force of T acts on the body along the line CD. The 
introduction of this force is used both for methodological purposes and to ensure certain 
specified classes of motion. 

To describe the position of the body we shall choose Cartesian coordinates X, y for the centre 
of the plate and the angle of inclination Q, which we will measure clockwise in the plane from 
the line CD to the axis of the inertial system of coordinates. Here the system phase space (x, y, 
q’, X, y, p) is six-dimensional. The quantities II and a are expressed by non-integrable relations 
in terms of the variables X, y and 9. Because of this we specify the phase state of the system by 
the quantities (v, a, qf, x, y, (p) and consider the functions v and a to be quasi-velocities of the 
system. 

Because the generalized forces, and also the kinetic energy, do not depend on the position of 
the body on the plane, the coordinates (x, y, (p) are cyclic. This enables us to consider a system 
of ordinary differential equations of lower dimension, the first two equations of which describe 
the motion of the centre of mass and the last one describes the time variation of the moment of 
momentum about the Koenig axis 

u'cosa-cu'usinclltw~sinartao~ =(T-s(a)S)/m 

u'sina +a’ucosa - oucosa +uo’ =O 

Zw’ = -Jqa)s(a)d 
(1.1) 

(cr is the distance DC, m is the mass of the body, and Z is its central moment of inertia). 
The following three kinematic relations complete system (1.1) to the sixth order 

tp*=(.Q, X-z ucodol- cp), y’ =usin(iY --I#) (1.2) 

The functions y and s occur in the dynamical system (1.1). To describe them qualitatively we 
use experimental information on the properties of jet flow. 

We shall assume that y is a sufficiently smooth, odd, 27~periodic function satisfying the fol- 
lowing conditions: y(a) > 0 when a E (0, rc>, with y’(0) > 0, y’(rc/ 2) and also y(a + or) = -y(a). 

We shall also assume that s is a sufficiently smooth, even, 2;rr-periodic function satisfying the 
following conditions: s(a) > 0 when a E (0, 7r/2), s(a) >O, when a E (a/2, K), with s(0) >O, 
s’(A/ 2) < 0, and also s(a + rt) = -s(a). We shall denote the class of such functions s by C. 

FIG. 1. 
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We will consider the product F(cx) = y(a)s(uQ. A consequence of the preceding definitions is 
the assertion that F is a sufficiently smooth, odd, x-periodic function satisfying the following 
conditions: F(a) > 0 when a E (0, x/2), with F’(0) > 0, F’(lc/ 2) < 0. The class of such functions 
F will be denoted by @. 

Analysis of the resulting dynamical systems leads to the discovery of mechanical and 
topological analogies. The dynamical system obtained describes: (a) a free body in a resisting 
medium, with the velocity of the centre of the plate being constant, and (b) an anchored 
pendulum in a flowing medium. 

Here the equation for the angle of attack of the free body is equivalent to the equation for 
the angle of displacement of the anchored pendulum, and the constant velocity of the centre of 
the plate of the. free body corresponds to the constant velocity of the flow incident on the 
anchored pendulum [3,4,7-10,111. 

2. ON STRUCTURAL STABILITY 

By a structurally stable (coarse) system of differential equations we mean a system such that 
under small deformations that belong not to the entire class of functions, but only to some 
subclass, it is equivalent to the original system [12,13]. 

The theory of the dynamical system (1.1) involves the following aspects: investigation of the 
topological structures of two- and three-dimensional phase patterns, and also the proof of 
structural stability (robustness) of these dynamical systems depending on the value of the 
controlling propulsion [4,7-111. 

We shall consider a deformation of the right-hand side of the system that belong not to the 
entire class of right-hand sides, but to the subclass 

KCC’, r>l 

Definition. A system of differential equations specifying a sufficiently smooth vector field V 
will be referred to as structurally stable (coarse) with respect to the class of functions K c C’ 
(relatively structurally stable) if any vector field W defined with the aid of the class of functions 
K and obtained by deforming the field V in the C’ topology relative to the class of functions K 
is topologically equivalent to the field V. 

For some fixed functions T system (1.1) is structuraly stable (coarse) with respect to the 
classes Q and Z. Furthermore, any two vector fields defined with the aid of the classes Q and E 
are topologically equivalent. 

The following conditions are satisfied 

F=F,,@)=ABsincwcoscuEcP, s=s,(ol)=Bcos~~EZ (2.1) 

If there is structural stability for system (1.1) for some function T with respect to the classes 
@ and I; then when considering system (1.1) one can restrict oneself to an analytic system of 
equations (1.1) with conditions (2.1). 

It is known that coarse systems are not dense in the C’ topology [14]. But if one considers 
coarse systems with respect to the subclass K CC’, then it may turn out that in the C1 
topology the given systems can generate an everywhere dense set. Indeed, for certain fixed 
functions T coarse systems (l.l), defined with respect to classes Q and Xc, are everywhere dense 
in the C’ topology. 
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3. A SYSTEM OF DIFFERENTIAL EQUATIONS 

We consider the motions of a body such that at all times the magnitude of the velocity of the 
centre of the plate is constant. Here we impose a non-holonomic constraint on the system, and 
the force T is the reaction of this non-holonomic constraint [9, lo].? The theory for this case 
has been developed in [4,7-ll].$ 

On the other hand, the equation u(t)= const specifies in the phase space a class of level 
surfaces of the first integral. Here the function T is the control supposing the motion of the 
system on a given surface. 

Thus, an independent second-order subsystem decouples from system (1.1). Inside and only 
inside the manifold 

0=f(fx,cd)ER2: cosar=oj 

this subsystem is equivalent to the following system with h = 0 

a*=w+AIF(a)/cosa, w’=A,F(cr)-ho 

Al = w/r, A2 = -v”/l (3.1) 

For the details of reducing system (1.1) to system (3.1) see [7, 8] and the author’s dissert- 
ation. 

We shall assume that a damping moment linear in the angular velocity is imposed on the 
body, and that it only changes the angular acceleration. Thus the change in the angle of attack 
and the angular velocity is given by system (3.1). 

Under condition (2-l), system (3.1) assumes the form of the analytic system 

tx’ =weA,sina, o’=A2sincucoscu-- ho 

A, = ovAB/l, A2 = -v’AB/i 

Below we consider system (3.2) because the general system (3.1) is topolo~cally equivalent 
to system (3.2) either with respect to the class @ or with respect to the space of functions C’. 
Moreover, system (3.1) is relatively structurally stable for the class (I? 

4. QUALITATIVE ANALYSIS OF THE DYNAMICAL SYSTEM 

C~~i~c~ij~n o~~~g~Z~~ ~oi~fs. System (3.2) (like system (3.1)) has stationary points (kn, 
0), and also 

(arccos(-hA1/‘A2), -Al sin arccos(-hA1/A2)) (4.1) 

which exist only when 

A2/A, <h < -A2/A1 (4.2) 

$See also: EROSHIN V. A., SAMSONOV V. A. and SHAMOLIN M. V., On the motion of a body in a medium with 

jet flow. In Proceedings of the AI/-Union Meeting on fhe S~abi~j~ of Motion, Osci~la~io~~ of mechanical System and 

Aerodynamics (2411. 1988). Deposited in VINITI 22.12.88, No. 8886-8-88. 

*See also: SHAMOLIN M. V., Qualitative analysis of a model problem on the motion of a body in a medium with jet 

flow. Candidate dissertation, Moscow State University, Moscow, 1991. 
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Here and throughout k=O, + 1, k 2, . . . . The roots of the characteristic equation of system 
(3.2) near the points (2klc, 0) have the form 

x i,* =?4(A, -h * [(h +.4i)Z +4.A*lH) 

and the bifurcation set consists of the following constants 

For the points ((2k + 1)x, 0) we have similar expressions with Al replaced by -Al. 
If they exist, the stationary points (4.1) are of saddle type. Indeed, the points of the field (4.1) 

only exist when condition (4.2) is satisfied, which ensures that the characteristic equation has 
real roots of opposite signs near the points (4.1). 

Below we use for convenience the following notation and abbreviations: 5 = AZ/Al, 77,’ = 
A1 kd(-4), q? = -A, f 4(-A,), S is a saddle, SN is a stable node, UN is an unstable node, SF 
is a stable focus, UF is an unstable focus, SC is a stable limit cycle and UC is an unstable limit 
cycle. 

The classification of the stationary points (0,O) and (z, 0) is given in Tables l-4 and corres- 
ponds to the following four cases: 

Case 1A (Table 1) 

Case 1B (Table 2) 

Case 2 (Table 3) 

Case 3 (Table 4) 

t< q:<q;<-Al <O<A, <q+_ <q:<-[ 

TABLE 1 

Subcase Range of Stationary point type Figure 
No. variation of h (0.0) (G 0) No. 

1 (4-. 5, UN S 2 

2 (C a) UN UN 9* 

3 w. II;) UF UN 9* 

4 cc. -4) UF UF 9 

5 (-4.0) UF SF UC-5 
7 

6 (0, 4) UF SF SC-4 
6 

7 (49 VT) SF SF 8 

8 @l-‘* $1 SN SF 8* 

9 w. 4) SN SN 8* 

10 (4 +-) S SN 3 
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TABLET 

Subcase Range of 
No. variation of h 

Stationary point type 
(O,O) (A, 0) 

Figure 
No. 

1 (-7 K) UN S 2 

2 (4, 6 UF S 2* 

3 (5s G) UF UN 9* 

4 (rt;? -4) UF UF 9 

5 c--%0) UF SF UC-5 

7 

6 (0, 4) UF SF SC-4 
6 

7 (4. @I SF SF 8 

8 WY -6) SN SF 8* 

9 (-59 7:) S SF 3* 

10 0cv +=I S SN 3 

TABLE 3 

Subcase Range of Stationary point type Figure 
No. variation of h (0-O) (% 0) No. 

1 c-T c) UN S 2 

2 (III, -.$I UF S 2* 

3 (-4,5) UF S 2* 

4 (4, 0 UF SN 7* 

5 (a, 0) UF SF 7 

6 (0, f) UF SF 6 

7 (4, -5) UN SF 6* 

8 (-C A,) S SF 3* 

9 (49 tl:) S SF 3* 

10 (rl=* +-I S SN 3 

Global qualitative analysis. It follows from the results of the author’s dissertation that for a 
system of the form (3.1), when the condition F E Q is satisfied for any h E R, a phase trajectory 
that has horizontal and vertical asymptotes in the phase plane in the neighbourhood of the 
point at infinity does not exist. As will be clear from the phase patterns, under certain 
conditions for a system of the form (3.1) inclined asymptotes to certain trajectories in the 
neighbo~h~d of the point at in~mity exist, which is then either attractive or repulsive. 

The question of the existence of closed trajectories that can be contracted to a point along 
the phase cylinder reduces to investigating the existence of such trajectories around either the 
points (~/CT, 0), k E Z, or ((2k+ l)a, 0) [ll]. Here in the strip II = {(a, o) E RZ : -x/2 < a < 
a/2) there sometimes exists a unique stable limit cycle, while in the strip II’= {((x, w) E R* : 
~12 <a c 3zf2f a unique unstable limit cycle exists. (In the first case, the size of the cycle 
decreases as h increases, and in the second one it increases.) 

Remarks. 1. There exists an /c >O (respectively hi CO) such that when h E(--M, h;)u 
(A,F’(O), +-) (respectively h E (--, -A,F’(O))u(h;, +-)) in the strip II (respectively lT) there 
are no closed trajectories or closed curves composed of trajectories. For systems of the form 
(3.2) we have the estimates 
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!A, <h; <Al, -A, <h; <-:A1 
A n 

2. The interval for the possible existence of a cycle is even narrower. One can show that a 
cycle exists only for h E (II;, A,), where h; is a non-zero root of the equation 

tge= -A,e/A: 

And similarly for hi. 
3. Along with the central symmetry about the points (krr, 0), the vector field of system (3.1) 

has a certain broadened mirror symmetry, namely the o-component of the vector field of 
system (3.1) changes sign when ICI 2+ Irk-a is replaced by K/ 2 + Irk + a and h by -h , while the 
a-component remains unchanged. 

For h = 0 system (3.1) possesses a certain mirror symmetry without h being transformed: in 
particular, at mirror-symmetric points with respect to the lines 

h=( (cY,o)ER? OT tn/2 tni) 

the a-components remain the same while the w-components change sign. 
By modifying the Dulac and Bendixon criteria, it can be shown that closed trajectories that 

do not contract to a point along the phase cylinder do not exist when h # 0. At h = 0 a 
continuum of trajectories of this topological type exists [4, 7-111 which forms a comparison 
system for the dynamical system (3.1) when h + 0. 

The numerous problems of the global behaviour of all the separatrices with hyperbolic 
saddles are investigated for each phase pattern separately: this is a development of the theory 
of Poincare topographic systems and comparison systems, For brevity, we will not describe this 
investigation here. For every specific topological type of phase pattern the behaviour of the 
separatrices is shown in Figs 2-9. 

4. For cases lA.1, lA.10, lB.1, 1B.2,1B.9,1B.10,2.1,2.2,2.3,2.8,2.9,2.10, 3.1, 3.2, 3.3, 3.4, 3.7, 
3.8,3.9,3.10 and only for these cases there are no equilibrium positions (4.1). 

5. The condition AfF’(0) + A, c 0 is not only sufficient, but is also necessary. Thus, for cases 
lA.1, lA.2, lA.3, lA.4, lA.7, lA.8, lA.9, lA.lO, lB.1, lB.2, lB.3, lB.4, lB.7, lB.8, lB.9, lB.10, 
2,3 there are no limit cycles anywhere in the R*{a, o} plane. 

FIG.~ 
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FIG. 3. 

FIG. 6. 
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TABLE 4 

Subcase 
No. 

Range of 
variation of h 

Stationary point type 

(OYO) @q 0) 

Figure 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

UN S 2 

UF S 2* 

UF S 2* 

UN S 2 

UN SN 7* 

UN SN 6* 

S SN 3 

S SF 3* 

S SF 3* 

S SN 3 

FIG. 7. 

FIG. 8. 
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FIG. 9. 

Phase pattern classification. Information about the correspondence between the subcases of 
the four cases lA, lB, 2, 3 and the phase patterns is given in Tables l-4. When there is 
incomplete correspondence between the results and the indicated phase patterns the figure 
number is marked by an asterisk. (In place of a node a focus may be shown, and vice versa.) 
The true types of stationary point is also given in Tables 14. 
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